

Бак для хранения горячей воды Накопительная емкость

БАК ДЛЯ ХРАНЕНИЯ «ALARKO»

Бак для хранения «Alarko» отвечает требованиям сознательных пользователей горячей воды 2000-х годов благодаря своей передовой технологии и идеально спроектированной форме. Результат более чем полувекового опыта работы в отрасли и передовых технологий... Наш опыт обеспечивает комфорт, надежность и экономичность в одном продукте. Мы предлагаем оптимальный выбор из 2 моделей и 23 типов в диапазоне объемов от 100 до 3000 литров для домов, многоквартирных зданий, больниц, гостиниц или рабочих мест. Продукт эргономичный, простой в сборке, использовании и обслуживании.

Долговечный и гигиеничный

Внутренняя поверхность эмалированная 200-500 микрон. (Стандарт DIN 4753-3 мин. 150 мкм.)

Полный контроль качества

Безопасность обеспечивается за счет индивидуального контроля при испытательном давлении 13 бар во время производства.

Элегантный и современный

Цилиндрическая структура.
Полиэтиленовое покрытие для типов 100-500 литров, Vintex-кожзаменитель для типов 800 и выше.

Соответствует европейским стандартам

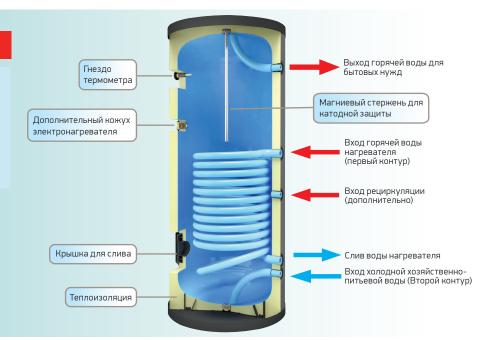
Полностью соответствует стандарту EN 12897 с принципами производства, долговечностью и эффективностью.

Устойчивый к коррозии

Катодная защита обеспечивается магниевым анодом, установленным в баке. Устройство защищено от химических и электрохимических реакций, предотвращается износ металла.

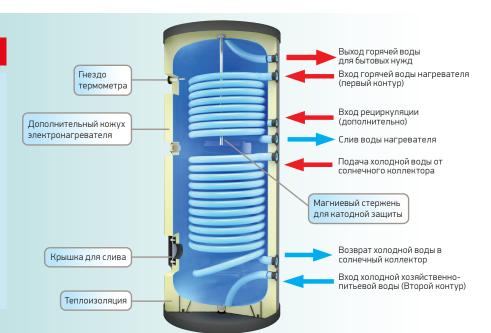
Отличная изоляция

Изоляция из жесткого пенополиуретана толщиной 50 мм для котлов на 100-500 л (~42 кг/м³) и мягкая изоляция из пенополиуретана толщиной 80 мм для котлов на 800-2000 л (~15 кг/м³).

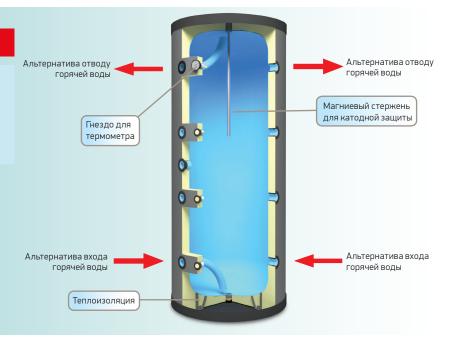

Теплопотери бойлера из жестного пенополиуретана - 1°C/24 часа Тепловая потеря бойлера из мягкого пенополиуретана - 4-6°C/24 часа.

ПРИНЦИПЫ РАБОТЫ

Бак с одним змеевиком


В качестве теплоносителя используется горячая вода или пар. Тепло теплоносителя передается воде для бытовых нужд с помощью змеевика с большим сечением и большой поверхностью теплопередачи.

Установка бака, управляемая насосом, работает только при необходимости.


Бак с двойным змеевиком

Двойной змеевик позволяет максимально использовать солнечную энергию при подаче горячей воды от нагревателя или парового котла. Один змеевик в баке подключен к системе солнечной энергии. Он передает тепло горячей воды из системы солнечной энергии в воду для бытовых нужд. Если горячая вода нагревается до установленной степени, бак, подключенный к другому змеевику, не активируется. Если желаемая температура не достигается, котел активируется и обеспечивает недостающую энергию. Таким образом, баки с двойным змеевиком очень экономично обеспечивают горячую воду в западном и южном климате, где зимой больше солнечного света.

Накопительная емкость

Аккумулирующие баки используются в виллах и зданиях для хранения технической воды с температурой ниже 95°С в гигиенических условиях с минимальными потерями тепла. Может быть подключен к установке с левой или правой стороны.

ТАБЛИЦА ПРОИЗВОДИТЕЛЬНОСТИ

Таб. 1: Таблица емкости одиночного змеевика (ASB 1)

Таблица 1-а) Контур бака: вход холодной воды o 10°C I Выход горячей воды o Непрерывная производительность при 60°C

Цепь нагревательного змеевика	Модель бака	ASB-1	100	160	200	300	500	800	1000	1500	2000	2500	3000
	Расход бака	л/ч	280	400	620	620	1080	1560	1560	2000	2580	3361	3881
90 → 70 °C	Мощность бака	кВт	16.3	23.3	36.1	36.1	62.8	90.7	90.7	116.3	150.0	195.4	225.6
90 → 70 €	Расход змеевика	м³/ч	0.7	1.0	1.6	1.6	2.8	4.0	4.0	5.1	6.6	8.6	10.0
	Сопротивление змеевика	мСС	0.03	0.02	0.10	0.10	0.37	0.98	0.98	1.98	3.96	3.72	5.73
	Расход бака	л/ч	178	238	380	380	680	1020	1020	1300	1680	2200	2560
80 → 60 °C	Мощность бака	кВт	10.4	13.8	22.1	22.1	39.5	59.3	59.3	75.6	97.7	127.9	148.9
00 → 00 C	Расход змеевика	м³/ч	0.5	0.6	1.0	1.0	1.7	2.6	2.6	3.3	4.3	5.6	6.5
	Сопротивление змеевика	мСС	0.01	0.01	0.03	0.03	0.17	0.40	0.40	0.91	1.76	1.75	2.61
	Расход бака	л/ч	88	110	190	190	360	566	566	740	960	1260	1480
70 → 50 °C	Мощность бака	кВт	5.1	6.4	11.0	11.0	20.9	32.9	32.9	43.0	55.8	73.3	86.1
70 → 50 C	Расход змеевика	м³/ч	0.2	0.3	0.5	0.5	0.9	1.4	1.4	1.9	2.4	3.2	3.8
	Сопротивление змеевика	мСС	0.01	0.01	0.01	0.01	0.04	0.19	0.19	0.36	0.62	0.67	0.88

Таблица 1-b) Контур бака: вход холодной воды o 10°C I Выход горячей воды o Непрерывная производительность для теплового насоса $ext{45^{\circ}C}$

Цепь нагревательного змеевика	Модель бака	ASB-1	100	160	200	300	500	800	1000	1500	2000	2500	3000
	Расход бака	л/ч	146	195	300	300	513	729	729	933	1006	1341	1341
55 → 50 °C	Мощность бака	кВт	5,8	7,8	12,0	12,0	20,5	29,1	29,1	37,2	40,1	53,5	53,5
Тепловой насос	Расход змеевика	м³/ч	1,0	1,4	2,1	2,1	3,6	5,1	5,1	6,5	7,0	9,3	9,3
	Сопротивление змеевика	мСС	0,06	0,05	0,14	0,14	0,61	1,58	1,58	3,16	4,62	4,47	5,12

Таб. 2: Двойной змеевик (ASB 2) Таблица емкости верхнего змеевика

Таблица 2-а) Контур бака: вход холодной воды ightarrow 10° С I Выход горячей воды ightarrow Непрерывная производительность при 60° С

H												
Цепь нагревательного змеевика	Модель бака	ASB-2	160	200	300	500	800	1000	1500	2000	2500	3000
	Расход бака	л/ч	180	244	244	628	700	700	700	1170	1440	1788
90 → 70 °C	Мощность бака	кВт	10.5	14.2	14.2	36.5	40.7	40.7	40.7	68.0	83.7	104.0
90 → 70 C	Расход змеевика	м³/ч	0.5	0.6	0.6	1.6	1.8	1.8	1.8	3.0	3.7	4.6
	Сопротивление змеевика	мСС	0.01	0.01	0.01	0.10	0.13	0.13	0.13	0.48	0.36	0.64
	Расход бака	л/ч	96	140	140	388	440	440	440	750	920	1150
80 → 60 °C	Мощность бака	кВт	5.6	8.1	8.1	22.6	25.6	25.6	25.6	43.6	53.5	66.9
80 → 60 €	Расход змеевика	м³/ч	0.2	0.4	0.4	1.0	1.1	1.1	1.1	1.9	2.4	2.9
	Сопротивление змеевика	мСС	0.01	0.01	0.01	0.03	0.05	0.05	0.05	0.22	0.18	0.33
	Расход бака	л/ч	34	52	52	196	224	224	224	404	636	636
70 → 50 °C	Мощность бака	кВт	2.0	3.0	3.0	11.4	13.0	13.0	13.0	23.5	37.0	37.0
/U → 3U C	Расход змеевика	м³/ч	0.1	0.1	0.1	0.5	0.6	0.6	0.6	1.0	1.6	1.6
	Сопротивление змеевика	мСС	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.06	0.12	0.15

Таблица 2-6) Контур бака: вход холодной воды ightarrow 10° С I Выход горячей воды ightarrow Непрерывная производительность для теплового насоса 45° С

Цепь нагревательного змеевика	Модель бака	ASB-1	160	200	300	500	800	1000	1500	2000	2500	3000
	Расход бака	л/ч	265	335	335	869	1006	1006	1006	1006	1341	1341
55 → 50 °C	Мощность бака	кВт	10.6	13.4	13.4	34.7	40.1	40.1	40.1	40.1	53.5	53.5
Тепловой насос	Расход змеевика	м³/ч	1.8	2.3	2.3	6.0	7.0	7.0	7.0	7.0	9.3	9.3
	Сопротивление змеевика	мСС	0.11	0.20	0.20	2.49	4.42	4.42	5.15	6.90	6.54	7.63

01) Значения расхода и мошности бака в таблицах применимы, если используется циркуляционный насос, достаточно большой для обеспечения расхода и сопротивления змеевика.

Таб. 3: Рекомендации по использованию резервуаров в солнечной энергетике

Таблица 3-а) Выбор для круглогодичного использования системы

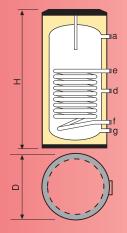
M ²	2.2 - 3.0	3.5 - 4.5	4.5 - 6.0	6.5 - 10.0	11.0 - 17.0	18.0 - 21.0	22.0 - 32.0
Объем бака (л)	100	160	200	300	500	800	1000
M^2	33.0 - 43.0	44.0 - 54.0	55.0 - 65.0	66.0 - 87.0	88.0 - 109.0	110.0 - 136.0	
Объем бака (л)	1500	2000	2500	3000	4000	5000	

ПРИМЕР: При круглогодичном использовании котел или аккумулирующий бак объемом 800 л подходит для солнечного коллектора площадью 18-21 м².

Таблица 3-6) Выбор системы для летнего использования

M ²	1.8 - 2.2	2.9 - 3.5	3.6 - 5.0	5.5 - 8.4	8.5 - 13.0	14.0 - 17.0	18.0 - 25.0
Объем бака (л)	100	160	200	300	500	800	1000
M ²	26.0 - 34.0	35.0 - 44.0	45.0 - 53.0	54.0 - 66.0	67.0 - 88.0	89.0 - 110.0	
Объем бака (л)	1500	2000	2500	3000	4000	5000	

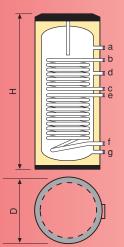
ПРИМЕР: В основном для летнего использования бак объемом 1500 л или аккумулирующий бак подходит для солнечного коллектора площадью 26-34 м².


ПРИМЕЧАНИЯ (для таблицы 3):

Объемы, указанные в таблицах выше, относятся к моделям с ОДНИМ ЗМЕЕВИКОМ. Объемы должны быть увеличены на 40-50% в баке С ДВУМЯ ЗМЕЕВИКАМИ.

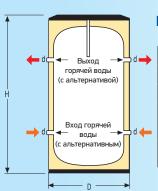
м²: максимальная полезная площадь всасывания солнечного коллектора с медно-селективной поверхностью и призматическим стеклом, которое можно соединить с баком. м³/ч: Требуемый расход циркуляционного насоса для обеспечения значений м² и кВт, указанных выше.

Значения, приведенные в таблице выше, рассчитаны на основе среднемесячных годовых данных Главного метеорологического управления Турецкой Республики для Эгейского и Средиземноморского регионов и могут варьироваться в пределах ±15% в год.


⁰²⁾ Таблица выше дана для верхнего змеевика бака с двойным змеевиком. Емкость нижнего змеевика, которая будет использоваться солнечной панелью, не включена. В случае, если нижний змеевик используется другим источником энергии, отличным от солнечной энергии, в качестве примера можно использовать значения бака ASB1.

Бак с одним змеевиком ASB - 1

Модель	100	160	200	300	400	500	800	1.000	1.500	2.000	2.500	3.000
Объем л	100	160	200	300	400	500	800	1.000	1.500	2.000	2.500	3.000
Диаметр (Д) мм	490	590	590	700	750	750	900	1.000	1.120	1.260	1.460	1.460
Высота (В) мм	1.080	1.125	1.320	1.210	1.450	1.800	2.100	2.070	2.300	2.230	2.200	2.560
Вход нагревателя - Выход (e-f)	1"	1 1/4"	1 1/4"	1 ¼"	1 ¼"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 ½"	1 ½"
Вход-выход бытовой воды (a-g)	3/4"	3/4"	3/4"	1"	1"	1"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 ½"	1 ½"
Рециркуляция (г)	3/4"	3/4"	3/4"	1"	1"	1"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 ½"	1 ½"
Вес в упаковке без воды кг	66	87	105	118	151	189	351	269	366	579	695	818


Максимальная рабочая температура составляет 120°С для контура теплоносителя и 70°С для контура бытовой воды. Максимальное рабочее давление контура теплоносителя составляет 18 бар для горячей воды, 1 бар для пара и 8 бар для контура бытовой воды.

Бак с двойным змеевиком ASB - 2

Модель	160	200	300	400	500	800	1.000	1.500	2.000	2.500	3.000
Объем л	160	200	300	400	500	800	1.000	1.500	2.000	2.500	3.000
Диаметр (Д) мм	590	590	700	750	750	900	1.000	1.120	1.260	1.460	1.460
Высота (В) мм	1.125	1.320	1.210	1.450	1.800	2.100	2.070	2.300	2.230	2.200	2.560
Вход нагревателя - Выход (e-f)	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 ¼"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 ½"	1 ½"
Вход-выход бытовой воды (a-g)	1 1/4"	1 1/4"	1"	1 1/4"	1 ¼"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 ½"	1 ½"
Рециркуляция (г)	3/4"	3/4"	1"	1"	1"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 ½"	1 ½"
Вес в упаковке без воды кг	3/4"	3/4"	1"	1"	1"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 ½"	1 ½"
Объем л	91	108	127	165	218	280	304	405	625	709	903

Максимальная рабочая температура составляет 120°С для контура теплоносителя и 70°С для контура бытовой воды. Максимальное рабочее давление контура теплоносителя составляет 18 бар для горячей воды, 1 бар для пара и 8 бар для контура бытовой воды.

Накопительный бак горячей воды - ААТ

•	Тип	100	160	200	300	400	500	800	1.000	1.500	2.000	2.500	3.000	4.000	5.000
	Объем л	100	160	200	300	400	500	800	1.000	1.500	2.000	2.500	3.000	4.000	5.000
	Диаметр (Д) мм	490	590	590	700	750	750	900	1.000	1.120	1.260	1.460	1.460	1.660	1.660
	Высота мм	1.080	1.125	1.320	1.210	1.450	1.800	2.100	2.070	2.300	2.230	2.220	2.540	2.665	3.100
	Д	1"	1 1/4"	1 1/4"	1 1/4"	1 ¼"	1 1/4"	1 ½"	1 ½"	1 ½"	1 ½"	2"	2"	3"	3"
	Вес в упаковке без воды кг	53	68	78	94	124	147	193	211	295	489	573	677	738	858

Максимальная рабочая температура 90°С, максимальное рабочее давление 8 бар.

Таб. 4: Средняя потребность в горячей воде в точках потребления для воды 60°C (л/ч)

	В доме	В здании	В госпитале	В отеле	На рабочем месте	В школе	На заводе
Личный туалет	7.5 - 9	7.5 - 9	7.5 - 9	7.5 - 9	7.5 - 9	7.5 - 9	7.5 - 9
Общественный туалет	-	15 - 28	20 - 27	30 - 36	23 - 27	50 - 68	40 - 54
Ванная комната	90 - 250	76 - 250	76 - 250	76 - 250	-	-	-
Посудомоечная машина	40 - 68	40 - 68	160 - 680	160 - 760	-	75 - 450	75 - 450
Кухонная мойка	35 - 45	35 - 45	70 - 90	70 - 136	38 - 90	35 - 90	70 - 90
Стиральная машина	70 - 90	70 - 90	75 - 126	75 - 126	-	-	-
Душ	136 - 250	114 - 250	250 - 340	250 - 340	114 - 136	250 - 1000	750 - 1000
Использовать фактор разнообразия	(1)	(1)	0.25	0.25	0.3	0.4	0.4
Фактор хранения	0.70	1.25	0.60	0.80	2.00	1.00	1.00

⁽¹⁾ Фактор использования разнообразия для домов и резиденций будет взят из Таблицы 5.

Таб. 5: Применяется фактор разнообразия для жилых помещений (TSE1258)

Резиденции	1	5	10	15	20	30	40	50	80	120	150	200
Фактор разнообразия	1.00	0.55	0.49	0.45	0.4	0.36	0.34	0.32	0.30	0.30	0.30	0.30

ВАЖНЫЕ ЗАМЕТКИ:

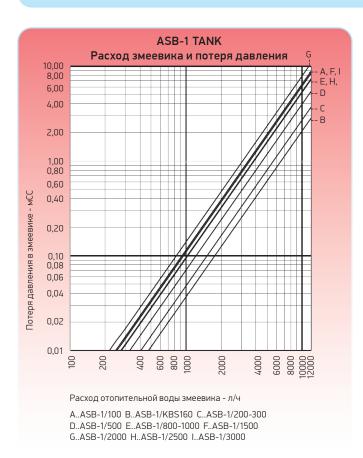
01) Значения потребности в горячей воде для посудомоечных и стиральных машин, приведенные в таблице выше, не учитываются для новых машин, так как они нагревают воду сами, а не берут ее извне. Кроме того, несмотря на то, что это указано в таблице, значения потребности в горячей воде для душа учитываются вместо значений потребности в горячей воде для ванны в зависимости от изменения привычки применения.

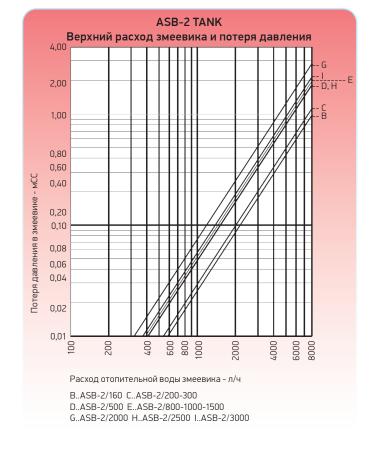
02) Поскольку таблицы мощности бака даны в соответствии с работой бака при 10/60°С, потребление горячей воды также должно определяться как 60°С.

Температура использования горячей воды в душе и смесителе после смешивания горячей воды принимается равной 45°C.

Смешанное потребление горячей воды при температуре бака 60°С;

Для 40°C умножить на 0,6


Для 45°C умножить на 0,7 (чаще всего используется значение 45°C)


чтобы получить расход воды при 60°C и это значение берется за основу при выборе бака.

Соответственно, если количество горячей воды задано как 1500 л/ч для 45° C, расход воды при 60° C в качестве основы для выбора бака составляет $1500 \times 0.7 = 1050$ л/ч.

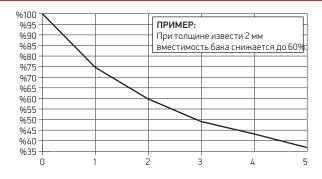
Значения в таблице 4 являются значениями потребления для 60°C и не могут использоваться для 45°C.

Поскольку при использовании низкотемпературного теплового насоса температура бака будет составлять максимум 45°C, объем потребления горячей воды для температуры 45°C напрямую используется для выбора бака.

1. КАЧЕСТВО ВОДЫ:

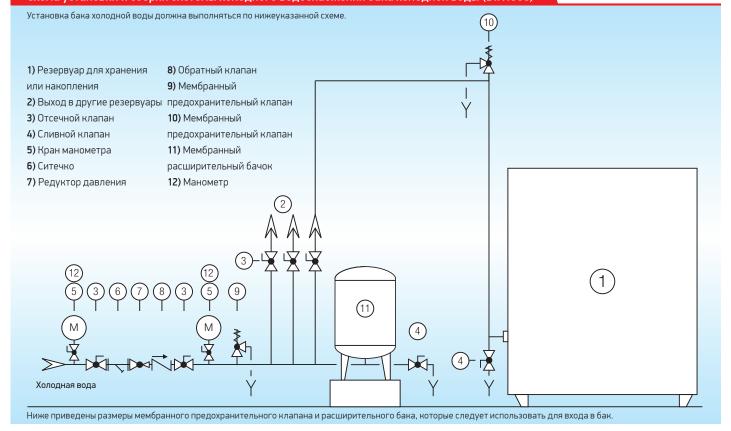
Свойства воды, используемой в баке Он должен соответствовать постановлению Министерства здравоохранения Турецкой Республики о воде, предназначенной для потребления человеком. (Постановление от 03.07.2013-28580)

Таким образом, чтобы свести к минимуму коррозионное повреждение, химические свойства воды для бытовых нужд должны находиться в пределах предельных значений, указанных в соседней таблице.


Химические свойства воды для бака гарантийные условия

	Предельные значения
pH	6,5 - 9,5
Проводимость при 20°C	50 - 500 мкСм/см
O6wag wastwast	10 - 20 °Fr (*)
Общая жесткость	(5,5 - 11 °dH, 100 - 200 ppm)
Хлорид (CI)	≤250 мг/л
Сульфат (SO ₄ ²⁻)	≤250 мг/л
Гидрокарбонат (HCO³-)	70 - 300 мг/л
Свободный газообразный хлор (CI²)	< 1 мг/л (за 5 часов)

^{* 1} французский градус (°F) = 0,56 немецкий градус (°dH) = 10 CaCO₂ (ppm)


Значения жесткости воды для бытовых нужд

Максимально допустимое значение общей жесткости воды составляет 10-20°F, как указано в таблице выше. При определенных температурах, когда нарушается тепло-холодный баланс минералов кальция (карбонат кальция $CaCo_3$), магния (карбонат магния $MgCO_3$) в воде, происходит кристаллизация и, следовательно, образование извести. Образование извести на металлических поверхностях начинается при температуре воды около $25^{\circ}\text{C}-40^{\circ}\text{C}$ в зависимости от количества Ca и Ca

2. СБОРКА:

Схема установки и сборки системы холодного водоснабжения бака холодной воды (DIN1988)

Размер предохранительного клапана для систем, работающих с горячей водой, в зависимости от

Объем бака для хранения или накопления (л)	≤ 200	201 - 800	1000 - 5000	5001 - 10000	> 10000
Размер мембранного предохранительного клапана	1/2"	3/4"	1"	1 ¼"	1 ½"

Максимальное давление открытия предохранительного клапана резервуара составляет 8 бар.

Выбор расширительного бака по общему объему бака

Общий объем бака (л)	≤ 200	201 - 500	501 - 1000	1001 - 2000	2001 - 3000
Объем расширительного бака (л)	24	50	80	150	300
Общий объем бака (л)	3001 - 5000	5001 - 8000	8001 - 12000	12001 - 15000	15001 - 20000
Объем расширительного бака (л)	500	750	1000	1500	2000

КОМПЛЕКС «ALARKO CARRIER» В ГЕБЗЕ- ACGK

«АСGK» имеет закрытую территорию площадью $36\,800\,\mathrm{M}^2$ на участке площадью $60\,500\,\mathrm{M}^2$ в организованной промышленной зоне Гебзе. Строительство комплекса началось 1 июля 1999 года и завершилось 1 ноября $2000\,\mathrm{годa}$.

Вентиляционные установки и крышные кондиционеры производятся под брендом «Carrier» в соответствии с сертифицированными стандартами ISO 9001, ISO 14001, ISO 50001, SA 8000, OHSAS 18000 на производственном объекте компании «Alarko Carrier», которая обновила свою производственную технологию и модернизировала организацию. Также на этом предприятии производятся комбинированные котлы, горелка, погружной насос, циркуляционный насос и бустерный насос под брендом «Alarko», а панельные радиаторы производятся на заводе по производству радиаторов с открытой площадью 18 000 м² и с закрытой площадью 9 250 м² в Организованной промышленной зоне Дудуллу.

Примечание: Параметры могут быть изменены в случае применения технических новшес

АЛАРКО КАРИЕР САНАЙИ ВЕ ТИДЖАРЕТ А.Ш. GOSB-Gebze Organize Sanayi Bölgesi

Şahabettin Bilgisu Cad. 41480 Gebze-Kocaeli/TURKEY

Тел : (90)(262) 648 60 00 PBX **Факс** : (90)(262) 648 61 01

веб : www.alarko-carrier.com.tr Эл. почта : info@alarko-carrier.com.tr

